- Baskin
| rl S Engineering
s, s

Institute for Research & Innovation CENTER FOR RESEARCH IN
In Software for High Energy Physics C R E S S OPEN SOURCE SOFTWARE

Programmable Storage

Carlos Maltzahn, UC Santa Cruz

10/6/2020
Snowmass Community Planning Meeting

Opportunities for computing R&D to advance particle physics

< [op

& cC © & https://users.soe.ucsc.edu/~carlos: [E (67% e @ W Yy IN @D ®@ 01l v @ » =

Carlos Maltzahn

Baskin Home News Research Publications Teaching People Contact CV Q #
Engincenng 0l

Carlos Maltzahn

Introduction

Dr. Carlos Maltzahn is the founder and director of the UC Santa Cruz Center for
Research in Open Source Software (CROSS). Dr. Maltzahn also co-founded the
Systems Research Lab, known for its cutting-edge work on programmable
p e O p | e u C S C e d u /Ca r | O S m storage systems, big data storage & processing, scalable data management,
¢ ° distributed system performance management, and practical reproducible
evaluation of computer systems. Carlos joined UC Santa Cruz in 2004, after five

years at Netapp working on network-intermediaries and storage systems. In 2005

Carlos Maltzahn he co-founded and became a key mentor on Sage Weil's Ceph project. In 2008
Adjunct Professor, Founder & Carlos became a member of the computer science faculty at UC Santa Cruz and
Director of CROSS has graduated nine Ph.D. students since. Carlos graduated with a M.S. and Ph.D.
Department of Computer Science & in Computer Science from University of Colorado at Boulder.
Engineering
Center for Research in Open Source His work is funded by government and industry, including NSF OAC-1836650, NSF
Software (CROSS) CNS-1764102, NSF CNS-1705021, DOE ASCR DE-SC0016074, NSF OAC-1450488,

Jack Baskin School of Engineering and CROSS
University of California, Santa Cruz

EoAIMmMY

For more details, you can read his vitae.

o @ @ cv Administrative Staff Research Staff
e Stephanie Lieggi e Kate Compton
® Lavinia Preston ® |vo Jimenez

Current Ph.D. Students Graduated Ph.D. Students
Alexander Ames, 2011 (thesis)
Joe Buck, 2014 (thesis)

Adam Crume, 2015 (thesis)
Latchesar lonkov, 2018 (thesis)

e Saheed Adepoju
® Xiaowei Chu
e Jianshen Liu
® Esmaeil Mirvakili

® Yiming Zhang . .
Ivo Jimenez, 2019 (thesis)

Michael Sevilla, 2018 (thesis)
Andrew Shewmaker, 2016 (thesis)
Dimitrios Skourtis, 2014 (thesis)
Noah M. Watkins, 2018 (thesis)

(OO

Computational Storage:

= |dea dates back to mainframes
= First Channel I/O processors in IBM 709, 1957

= Network Attached Secure Disks (NASD)
= Research project at CMU, 1997-2001
= Encryption, compression, data management (“active storage”)
= SCSI T10 Object Storage Device (OSD) v1 and v2 standards

= Only offloads part of file system functionality

= Ceph
= Research project at UC Santa Cruz, 2005-2007
= Designed for OSDs
= Broke OSD standard with P2P communication for failure management
= |Implemented for hosts, not devices

= SkyhookDM Plugin for Ceph
= CROSS incubator project at UC Santa Cruz since 2016
= Offloads data management of tabular data
= Turns Ceph into an Apache Arrow-native store (since 2020)

= Computational Storage
= SNIA Technical Working Group (TWG) since 2019
= Focus on storage devices

= FEusocial Storage Devices
= CROSS research project at UC Santa Cruz since 2017
= P2P communication, specialization into “castes”
= |/O stack flexible about offloading: pushdown, pushback
= Leverages Smart NICs

History

&« C @ O & nhtpsy// B

67%

Q sEARCH

A
SNIA O onsus |
ABOUT STANDARDS [V [l TECHNOLOGY FOCUS AREAS NEWS & EVENTS RESOURCES = MEMBERSHIP

Educational Library

ST What Is Computational Storage?
Computational Storage is defined as architectures that provide Computational Storage Services
coupled to storage, offloading host processing, or reducing data movement. A Computational
Storage Service (CSS) is a data service or information service that performs computation on
data where the service and data are associated with a storage device.

> Whatls...?

What is a Storage Area
Network (SAN)?

What Is Computational

Storage? Current Compute / Storage Architecture

What is Persistent
Memory?

= () (5

What is NAS (Network
Attached Storage)?

Computational Storage architectures enable improvements in application performance and/or
infrastructure efficiency through the integration of compute resources: directly with storage, near

the storage or between the host and the storage. These compute resources are outside of the
traditional compute and memory architecture.

What is SNIA Emerald™?

What is the SNIA
Swordfish Standard?

What is Linear Tape File
System (LTFS)?

What is NVMe?

The goal of these architectures is to: enable parallel computation; reduce I/0 traffic; and/or to
alleviate other constraints on existing compute, memory, storage, and 1/0.

What is Fibre Channel?

What is iSCSI? . . . R
The SNIA Physical Storage Technology Focus Area includes information on Computational

Storage Technical Work Group activities. SNIA’s Educational Library includes the SNIA
Dictionary, webcasts, videos, and presentations on Computational Storage.

Learn more about Computational Storage in our Ed
Chat now D

What is Data Protection?
What is Data Privacy?

What is Storage Security?

Computational Storage: Why now?

= Storage devices are getting very fast Bandwidth ——
= CPU/DRAM/PCle cannot keep up Mi PCle Flash 1
I m h witc
= CPU/DRAM/PCle tax for storage smatc Swien @ :
increases
. . . PCle Flash 31
= Disaggregation in data centers 5 |//| swichi o
= Multi-tenant workloads are too diverse E cPU 5 “500MBls =
for any kind of packaging g . SIBCEE
= Better to dynamically assemble systems . ——— s
from parts Flash SSD
= Storage fabrics are expensive o % & 55

= NVMe requires host kernel resources Flash SSD Flash 31
= Ethgrnet is much cheaper and keeps 66x Tput Gap
getting faster

. N ew IP_IP rOtOCO|S are gettl ng ve ry faSt: Based on Jae Do, “SoftFlash: Programmable Storage in Future Data
e.g. HTTP/3 Centers”, SNIA SDC 2017, Santa Clara, CA.

Programmable Storage

A programmable storage system or device exposes internal subsystem
abstractions as “interfaces” to enable the creation of higher-level
services via composition.

Collaborators: Jeff LeFevre (UCSC), Ivo Jimenez (UCSC), Esmaeil Mirvakili (UCSC), Jayjeet
Chakraborty (NIT), Aditi Gupta (NIT), Aaron Chu (UCSC), Xiongfeng Song (Rice)

Programmable Storage

Computational Storage + Programmability

For storage systems:
* Storage has to be correct, otherwise data loss
* Correct software takes time
* Reuse as much as possible = Composability
* Composability important for optimization

For storage devices:

* Storage device industry has very low margins

* Products must fit existing market and have a
minimum life time

* Programmable devices to reduce market risk
* Greater opportunity for innovation

Today's
Applications

[ﬂmmm ‘ bAm™ 176

L v v L v
v/ CONSENSVS v/ BATCHING v/ PERSISTENCE

v/ ATOMIC 6FPS v/ DATA ACCESS v MIGRATION

Malacology: A Programmable Storage System (built on@ceph)

What is SkyhookDM? A, object “class” for Ceph

ceph -

tree-d -
ceph/src -

* No upstream modifications required

—_— o - .2 77 * Inherits Ceph’s properties now and
Growth of mainline .

| hello e D e | inthe future

| — journal object classes

L fs 2010-2018 * Can use all other object extensions
og .

| F lid * Not a database

| F— numops — \

|+ rbd R e

| F— refcount

| — replica_log . . -

| row Storing tabular data in objects

I l_ Sdk APACHE

| — statelog . Using ARROW>>>

| tabular &3 SkyhookDM

. 5 Object read/write operations
user

I

L— version

* Select, Project, Aggregate

* Create, append rows/columns

* Indexing

* Intra- & inter-object transformations

SkyhookDM Client

Client maps tables to sets of objects
e Map is also stored in objects

Client API designed for plugins

* Allows pushdown to scale out tabular data
operations

* Reduces data movement (CPU cycles!)

IRIS-HEP

e Connting to Coffea and ServiceX

CROSS
* Plugins for Postgres, Spark, Pandas, HDF5

NN 4

e BN

SX ®
ServiceX | Coffea
ServiceX Coffea

Plugin

SkyhookDM
Client

Processor

SkyhookDM
Client

How does SkyhookDM fit into DOMA?

ServiceX Plugin and Coffea Processor:

ServiceX creates one table per transformation request

* Partitions table and assigns transformer to each partition

* Each transformer creates and writes an object row-by-row

* ServiceX provides table metadata, incl. partitioning to SkyhookDM
Table names are arbitrary strings, globally unique

* Column names are arbitrary strings, unique within table

* Rows have a key, unique within table

Coffea Processor:

SkyhookDM can create views across arbitrary sets of tables

* View names are arbitrary strings, globally unique

* Views can be either by reference or by copy (i.e. materialized)

* SkyhookDM stitches views on a best-effort basis

* Key mappers can map one kind of key to another and can be stored
Design allows evolution of higher-level automation.

* Table naming conventions might indicate compatibility to other tables

* View naming conventions might allow automatic reuse of materialized
views

* Column naming conventions might allow versioning
* Naming convention might allow automatic garbage collection

ServiceX

Processor

Arrow
Dataset API

SkyhookDM
Client

librados

